redis实现分布式锁方式(redis分布式锁三个方法)

为什么需要分布式锁

在聊分布式锁之前,有必要先解释一下,为什么需要分布式锁。

与分布式锁相对就的是单机锁,我们在写多线程程序时,避免同时操作一个共享变量产生数据问题,通常会使用一把锁来互斥以保证共享变量的正确性,其使用范围是在同一个进程中。如果换做是多个进程,需要同时操作一个共享资源,如何互斥呢?现在的业务应用通常是微服务架构,这也意味着一个应用会部署多个进程,多个进程如果需要修改MySQL中的同一行记录,为了避免操作乱序导致脏数据,此时就需要引入分布式锁了。

阿里Java二面:如何用Redis实现分布式锁的?Redis本身可以被多个客户端共享访问,正好就是一个共享存储系统,可以用来保存分布式锁。而且 Redis 的读写性能高,可以应对高并发的锁操作场景。本文主要探讨如何基于Redis实现分布式锁以及实现过程中可能面临的问题。

分布式锁如何实现

作为分布式锁实现过程中的共享存储系统,Redis可以使用键值对来保存锁变量,在接收和处理不同客户端发送的加锁和释放锁的操作请求。那么,键值对的键和值具体是怎么定的呢?我们要赋予锁变量一个变量名,把这个变量名作为键值对的键,而锁变量的值,则是键值对的值,这样一来,Redis就能保存锁变量了,客户端也就可以通过Redis的命令操作来实现锁操作。

想要实现分布式锁,必须要求Redis有互斥的能力。可以使用SETNX命令,其含义是SET IF NOT EXIST,即如果key不存在,才会设置它的值,否则什么也不做。两个客户端进程可以执行这个命令,达到互斥,就可以实现一个分布式锁。

以下展示了Redis使用key/value对保存锁变量,以及两个客户端同时请求加锁的操作过程。

阿里Java二面:如何用Redis实现分布式锁的?

// 加锁
SETNX lock_key 1
// 业务逻辑
DO THINGS
// 释放锁
DEL lock_key

但是,以上实现存在一个很大的问题,当客户端1拿到锁后,如果发生下面的场景,就会造成死锁。

  1. 程序处理业务逻辑异常,没及时释放锁
  2. 进程挂了,没机会释放锁

以上情况会导致已经获得锁的客户端一直占用锁,其他客户端永远无法获取到锁。

如何避免死锁

为了解决以上死锁问题,最容易想到的方案是在申请锁时,在Redis中实现时,给锁设置一个过期时间,假设操作共享资源的时间不会超过10s,那么加锁时,给这个key设置10s过期即可。

但以上操作还是有问题,加锁、设置过期时间是2条命令,有可能只执行了第一条,第二条却执行失败,例如:

  1. SETNX执行成功,执行EXPIRE时由于网络问题,执行失败
  2. SETNX执行成功,Redis异常宕机,EXPIRE没有机会执行
  3. SETNX执行成功,客户端异常崩溃,EXPIRE没有机会执行

总之这两条命令如果不能保证是原子操作,就有潜在的风险导致过期时间设置失败,依旧有可能发生死锁问题。幸好在Redis 2.6.12之后,Redis扩展了SET命令的参数,可以在SET的同时指定EXPIRE时间,这条操作是原子的,例如以下命令是设置锁的过期时间为10秒。

SET lock_key 1 EX 10 NX

至此,解决了死锁的问题,但还是有其他问题。想像下面这个这样一种场景:

阿里Java二面:如何用Redis实现分布式锁的?

  • 锁过期
  • 释放了别人的锁

第1个问题是评估操作共享资源的时间不准确导致的,如果只是一味增大过期时间,只能缓解问题降低出现问题的概率,依旧无法彻底解决问题。原因在于客户端在拿到锁之后,在操作共享资源时,遇到的场景是很复杂的,既然是预估的时间,也只能是大致的计算,不可能覆盖所有导致耗时变长的场景。

第2个问题是释放了别人的锁,原因在于释放锁的操作是无脑操作,并没有检查这把锁的归属,这样解锁不严谨。如何解决呢?

锁被别人给释放了

解决办法是,客户端在加锁时,设置一个只有自己知道的唯一标识进去,例如可以是自己的线程ID,如果是redis实现,就是SET key unique_value EX 10 NX。之后在释放锁时,要先判断这把锁是否归自己持有,只有是自己的才能释放它。

//释放锁 比较unique_value是否相等,避免误释放
if redis.get("key") == unique_value then
    return redis.del("key")

这里释放锁使用的是GET + DEL两条命令,这时又会遇到原子性问题了。

  1. 客户端1执行GET,判断锁是自己的
  2. 客户端2执行了SET命令,强制获取到锁(虽然发生概率很低,但要严谨考虑锁的安全性)
  3. 客户端1执行DEL,却释放了客户端2的锁

由此可见,以上GET + DEL两个命令还是必须原子的执行才行。怎样原子执行两条命令呢?答案是Lua脚本,可以把以上逻辑写成Lua脚本,让Redis执行。因为Redis处理每个请求是单线程执行的,在执行一个Lua脚本时其它请求必须等待,直到这个Lua脚本处理完成,这样一来GET+DEL之间就不会有其他命令执行了。

以下是使用Lua脚本(unlock.script)实现的释放锁操作的伪代码,其中,KEYS[1]表示lock_key,ARGV[1]是当前客户端的唯一标识,这两个值都是我们在执行 Lua脚本时作为参数传入的。

//Lua脚本语言,释放锁 比较unique_value是否相等,避免误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

最后我们执行以下命令,即可

redis-cli  --eval  unlock.script lock_key , unique_value 

这样一路优先下来,整个加锁、解锁流程就更严谨了,先小结一下,基于Redis实现的分布式锁,一个严谨的流程如下:

  1. 加锁时要设置过期时间SET lock_key unique_value EX expire_time NX
  2. 操作共享资源
  3. 释放锁:Lua脚本,先GET判断锁是否归属自己,再DEL释放锁

有了这个严谨的锁模型,我们还需要重新思考之前的那个问题,锁的过期时间不好评估怎么办。

如何确定锁的过期时间

前面提到过,过期时间如果评估得不好,这个锁就会有提前过期的风险,一种妥协的解决方案是,尽量冗余过期时间,降低锁提前过期的概率,但这个方案并不能完美解决问题。是否可以设置这样的方案,加锁时,先设置一个预估的过期时间,然后开启一个守护线程,定时去检测这个锁的失效时间,如果锁快要过期了,操作共享资源还未完成,那么就自动对锁进行续期,重新设置过期时间。

这是一种比较好的方案,已经有一个库把这些工作都封装好了,它就是Redisson。Redisson是一个Java语言实现的Redis SDK客户端,在使用分布式锁时,它就采用了自动续期的方案来避免锁过期,这个守护线程我们一般叫它看门狗线程。这个SDK提供的API非常友好,它可以像操作本地锁一样操作分布式锁。客户端一旦加锁成功,就会启动一个watch dog看门狗线程,它是一个后台线程,会每隔一段时间(这段时间的长度与设置的锁的过期时间有关)检查一下,如果检查时客户端还持有锁key(也就是说还在操作共享资源),那么就会延长锁key的生存时间。

阿里Java二面:如何用Redis实现分布式锁的?

Redis的部署方式对锁的影响

上面讨论的情况,都是所在单个Redis 实例中可能产生的问题,并没有涉及到Redis的部署架构细节。

Redis发展到现在,几种常见的部署架构有:

  1. 单机模式;
  2. 主从模式;
  3. 哨兵(sentinel)模式;
  4. 集群模式;

我们使用Redis时,一般会采用主从集群+哨兵的模式部署,哨兵的作用就是监测redis节点的运行状态。普通的主从模式,当master崩溃时,需要手动切换让slave成为master,使用主从+哨兵结合的好处在于,当master异常宕机时,哨兵可以实现故障自动切换,把slave提升为新的master,继续提供服务,以此保证可用性。那么当主从发生切换时,分布式锁依旧安全吗?

阿里Java二面:如何用Redis实现分布式锁的?

  1. 客户端1在master上执行SET命令,加锁成功
  2. 此时,master异常宕机,SET命令还未同步到slave上(主从复制是异步的)
  3. 哨兵将slave提升为新的master,但这个锁在新的master上丢失了,导致客户端2来加锁成功了,两个客户端共同操作共享资源

可见,当引入Redis副本后,分布式锁还是可能受到影响。即使Redis通过sentinel保证高可用,如果这个master节点由于某些原因发生了主从切换,那么就会出现锁丢失的情况。

集群模式+Redlock实现高可靠的分布式锁

为了避免Redis实例故障而导致的锁无法工作的问题,Redis的开发者 Antirez提出了分布式锁算法Redlock。Redlock算法的基本思路,是让客户端和多个独立的Redis实例依次请求加锁,如果客户端能够和半数以上的实例成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁了,否则加锁失败。这样一来,即使有单个Redis实例发生故障,因为锁变量在其它实例上也有保存,所以,客户端仍然可以正常地进行锁操作,锁变量并不会丢失。

来具体看下Redlock算法的执行步骤。Redlock算法的实现要求Redis采用集群部署模式,无哨兵节点,需要有N个独立的Redis实例(官方推荐至少5个实例)。接下来,我们可以分成3步来完成加锁操作。

阿里Java二面:如何用Redis实现分布式锁的?第二步是,客户端按顺序依次向N个Redis实例执行加锁操作。

这里的加锁操作和在单实例上执行的加锁操作一样,使用SET命令,带上NX、EX/PX选项,以及带上客户端的唯一标识。当然,如果某个Redis实例发生故障了,为了保证在这种情况下,Redlock算法能够继续运行,我们需要给加锁操作设置一个超时时间。如果客户端在和一个Redis实例请求加锁时,一直到超时都没有成功,那么此时,客户端会和下一个Redis实例继续请求加锁。加锁操作的超时时间需要远远地小于锁的有效时间,一般也就是设置为几十毫秒。

第三步是,一旦客户端完成了和所有Redis实例的加锁操作,客户端就要计算整个加锁过程的总耗时。

客户端只有在满足两个条件时,才能认为是加锁成功,条件一是客户端从超过半数(大于等于 N/2+1)的Redis实例上成功获取到了锁;条件二是客户端获取锁的总耗时没有超过锁的有效时间。

为什么大多数实例加锁成功才能算成功呢?多个Redis实例一起来用,其实就组成了一个分布式系统。在分布式系统中总会出现异常节点,所以在谈论分布式系统时,需要考虑异常节点达到多少个,也依旧不影响整个系统的正确运行。这是一个分布式系统的容错问题,这个问题的结论是:如果只存在故障节点,只要大多数节点正常,那么整个系统依旧可以提供正确服务。

在满足了这两个条件后,我们需要重新计算这把锁的有效时间,计算的结果是锁的最初有效时间减去客户端为获取锁的总耗时。如果锁的有效时间已经来不及完成共享数据的操作了,我们可以释放锁,以免出现还没完成共享资源操作,锁就过期了的情况。

当然,如果客户端在和所有实例执行完加锁操作后,没能同时满足这两个条件,那么,客户端就要向所有Redis节点发起释放锁的操作。为什么释放锁,要操作所有的节点呢,不能只操作那些加锁成功的节点吗?因为在某一个Redis节点加锁时,可能因为网络原因导致加锁失败,例如一个客户端在一个Redis实例上加锁成功,但在读取响应结果时由于网络问题导致读取失败,那这把锁其实已经在Redis上加锁成功了。所以释放锁时,不管之前有没有加锁成功,需要释放所有节点上的锁以保证清理节点上的残留的锁。

在Redlock算法中,释放锁的操作和在单实例上释放锁的操作一样,只要执行释放锁的 Lua脚本就可以了。这样一来,只要N个Redis实例中的半数以上实例能正常工作,就能保证分布式锁的正常工作了。所以,在实际的业务应用中,如果你想要提升分布式锁的可靠性,就可以通过Redlock算法来实现。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 ivillcn@qq.com 举报,一经查实,本站将立刻删除。文章链接:https://www.shangraobbs.com/n/4619.html

(0)
上一篇 2023年12月18日 下午5:01
下一篇 2023年12月18日

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注